non-abelian, supersoluble, monomial
Aliases: C32⋊C9.1S3, C32⋊C9.1C6, C33.2(C3×S3), C32⋊2D9⋊1C3, C32.24He3⋊2C2, C32.26(C32⋊C6), C3.5(He3.2S3), C3.1(He3.2C6), SmallGroup(486,5)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C32⋊C9 — C32⋊C9.S3 |
C32⋊C9 — C32⋊C9.S3 |
Generators and relations for C32⋊C9.S3
G = < a,b,c,d | a3=b3=c9=1, d6=b, ab=ba, cac-1=ab-1, dad-1=a-1bc3, bc=cb, bd=db, dcd-1=a-1c5 >
(1 13 7)(4 16 10)(5 11 17)(6 12 18)
(1 7 13)(2 8 14)(3 9 15)(4 10 16)(5 11 17)(6 12 18)
(1 17 9 7 5 15 13 11 3)(2 4 6 14 16 18 8 10 12)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)
G:=sub<Sym(18)| (1,13,7)(4,16,10)(5,11,17)(6,12,18), (1,7,13)(2,8,14)(3,9,15)(4,10,16)(5,11,17)(6,12,18), (1,17,9,7,5,15,13,11,3)(2,4,6,14,16,18,8,10,12), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)>;
G:=Group( (1,13,7)(4,16,10)(5,11,17)(6,12,18), (1,7,13)(2,8,14)(3,9,15)(4,10,16)(5,11,17)(6,12,18), (1,17,9,7,5,15,13,11,3)(2,4,6,14,16,18,8,10,12), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18) );
G=PermutationGroup([[(1,13,7),(4,16,10),(5,11,17),(6,12,18)], [(1,7,13),(2,8,14),(3,9,15),(4,10,16),(5,11,17),(6,12,18)], [(1,17,9,7,5,15,13,11,3),(2,4,6,14,16,18,8,10,12)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)]])
G:=TransitiveGroup(18,170);
31 conjugacy classes
class | 1 | 2 | 3A | 3B | 3C | 3D | 3E | 3F | ··· | 3L | 6A | 6B | 9A | ··· | 9F | 9G | 9H | 9I | 18A | ··· | 18F |
order | 1 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | ··· | 3 | 6 | 6 | 9 | ··· | 9 | 9 | 9 | 9 | 18 | ··· | 18 |
size | 1 | 27 | 1 | 1 | 2 | 2 | 2 | 18 | ··· | 18 | 27 | 27 | 9 | ··· | 9 | 18 | 18 | 18 | 27 | ··· | 27 |
31 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 3 | 6 | 6 | 6 |
type | + | + | + | + | + | |||||
image | C1 | C2 | C3 | C6 | S3 | C3×S3 | He3.2C6 | C32⋊C6 | He3.2S3 | C32⋊C9.S3 |
kernel | C32⋊C9.S3 | C32.24He3 | C32⋊2D9 | C32⋊C9 | C32⋊C9 | C33 | C3 | C32 | C3 | C1 |
# reps | 1 | 1 | 2 | 2 | 1 | 2 | 12 | 1 | 3 | 6 |
Matrix representation of C32⋊C9.S3 ►in GL6(𝔽19)
7 | 0 | 0 | 0 | 0 | 0 |
7 | 1 | 0 | 0 | 0 | 0 |
8 | 0 | 11 | 0 | 0 | 0 |
0 | 0 | 0 | 7 | 0 | 0 |
11 | 0 | 0 | 0 | 11 | 0 |
12 | 0 | 0 | 0 | 0 | 1 |
11 | 0 | 0 | 0 | 0 | 0 |
0 | 11 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 0 | 0 | 0 |
0 | 0 | 0 | 11 | 0 | 0 |
0 | 0 | 0 | 0 | 11 | 0 |
0 | 0 | 0 | 0 | 0 | 11 |
7 | 13 | 0 | 0 | 0 | 0 |
0 | 12 | 7 | 0 | 0 | 0 |
7 | 12 | 0 | 0 | 0 | 0 |
12 | 7 | 0 | 0 | 0 | 1 |
11 | 7 | 0 | 11 | 0 | 0 |
11 | 7 | 0 | 0 | 11 | 0 |
8 | 0 | 0 | 0 | 15 | 0 |
8 | 0 | 0 | 0 | 8 | 7 |
8 | 0 | 0 | 7 | 8 | 0 |
0 | 11 | 0 | 0 | 11 | 0 |
11 | 0 | 7 | 0 | 11 | 0 |
11 | 0 | 0 | 0 | 11 | 0 |
G:=sub<GL(6,GF(19))| [7,7,8,0,11,12,0,1,0,0,0,0,0,0,11,0,0,0,0,0,0,7,0,0,0,0,0,0,11,0,0,0,0,0,0,1],[11,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,0,0,0,11],[7,0,7,12,11,11,13,12,12,7,7,7,0,7,0,0,0,0,0,0,0,0,11,0,0,0,0,0,0,11,0,0,0,1,0,0],[8,8,8,0,11,11,0,0,0,11,0,0,0,0,0,0,7,0,0,0,7,0,0,0,15,8,8,11,11,11,0,7,0,0,0,0] >;
C32⋊C9.S3 in GAP, Magma, Sage, TeX
C_3^2\rtimes C_9.S_3
% in TeX
G:=Group("C3^2:C9.S3");
// GroupNames label
G:=SmallGroup(486,5);
// by ID
G=gap.SmallGroup(486,5);
# by ID
G:=PCGroup([6,-2,-3,-3,-3,-3,-3,979,1190,224,338,4755,873,735,3244]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^3=c^9=1,d^6=b,a*b=b*a,c*a*c^-1=a*b^-1,d*a*d^-1=a^-1*b*c^3,b*c=c*b,b*d=d*b,d*c*d^-1=a^-1*c^5>;
// generators/relations
Export